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Temperature Programmed Desorption (TPD) and its homologous *‘flash
desorption™ (FD) techniques have attained a paramount interest in the study
of interaction of gases with solid surfaces in the last few years [1—4].

In spite of their analogies the theoretical analysis of line-shape of TPD
curves is less well developed than in the flash desorption technique from a
theoretical point of view, probably due to the higher complexity of the TPD
technique itself.

Early works of Cvetanovic and Amenomiya [5] developing ‘‘master
curves’’ to analyse line-shape of simple TPD peaks corresponding to processes
occurring according to a first-order desorption mechanism, with or without
free readsorption cof the desorbed phase on an homogeneous surface, have
been followed by the analysis of the effect of heterogeneity on the TPD
trace by the same authors [6] and, more recently, by the development of
“master curves’ for second-order desorption accompanied by readsorption
carried out by Scholten and Konvalinka [7].

Although these analyses follow a similar procedure, no attempts have been
made, to our knowledge, to make a general statement of the method in order
to extend it to any other kinetics of desorption.

The scope of this work was to make such a generalization of the Cvetano-
vic and Amenomiya method (hereafter CA method) and, as an example, to
extend it to a new case not yet studied in the literature.

In a general way, assuming the Arrhenius law to be valid to describe the
desorption process of a gas previously adsorbed on 2 solid surface, the
desorption rate from the surface can be expressed as

do

—a?= A* exp(—AH/RT)Y{(0) . )

where 0 is the surface coverage, A*™ the pre-exponential factor, AH the
adsorption enthalpy, and f(6) a function giving the raie dependence with 0,
which depends on the actual mechanism of the process.

If the diffusional process in the carrier gas can be neglected, eqn. (1) may
be written as a material balance, by equating the amount of gas detected in
the carrier gas stream per unit time to the amount of gas desorbed per unit
time
FC=—V,V,_(d0/dt) = —V,V,_3(d0/dT) (2)
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for linear heating schedule (T = T, +3t). V is the volume of the solid phase
in the catalytic bed, V, is the amount of gas adsorbed per unit volume of
the solid phase at 0 = 1, F'is the carrier gas flow rate, and C is the concentra-
tion of the desorbing gas in the carrier gas stream expressed as partial pres-
sure.

From eqn. (2) the value of C results

_ VeV dO

= 3
¢ FdT (3)
At the peak maximum, (dC/dT)r=1,, = 0 and therefore

AH 1
A* exp(—AH/RTy) = B (4)

RT3 £(0y)
where T; is the temperature at the peak maximum and 0,; is the coverage
when T = T\y,.

Equation (4) may be written in the logarithmic form

RA™{'(0y)  AH
mhf—2InTy=In-——— -~ — - - —

f M AH RTy
This expression can be used to experimentally obtain AH and A" from the
values of Ty at different heating rates and at constant ; and F.

To obtain the coverage at the peak maximum (0,;), a normalized form of
eqn. (2) may be used, where the value of C and T are expressed with respect
to their maximum values (C,, = C/Cy, T, = T/T;). From this variable change,
it follows

djd A-

- a;f; = -B—exp(—~AH/R TnT:\I)f(O )T;\j

£3)

and using the value of A/5 from eqn. (4)

0 (o A
- ddT = €y exp(—€n/T}) *(_l exp(€x) (6)

where €31 = AH/RT,;. As has been assumed by Scholten et al. [7], this sub-
stitution implies the independence of entropy with temperature, so the fol-
lowing expressions are entropy independent.

Integration of eqn. (6) between initial and maximum gives

LS 1
—F0x) .,I f_u‘n‘) = €x; expl€x) ,( exp(—eNn/T,)AT,
5 - N o
If
’ a0
I, = | exp(—eyn/T,)dT, and git)=--— ,I RO

it follows that the condition

f'(0n1) 8(0n1) = €n exp(en); (7).
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must be fulfiiied at peak maximum.

With the value of 0,; evaluated from eqn. (7) integration of eqn. (6) gives
theoretical line-shape. However, it is convenient, first of all, to do the variable
change

X = 62\1(1 - 1/Tn)
which transforms expression (6) to

_do _ exp(x)  £(0)
dx (1 —x/ex)® £1(0y)

Integration between 0,; and 0

0 v

r s dO ~ ()xp(x)
_f 0 ———— = —— 1’.
(Uar1) _,(“ £(0) 0[ 1= x/eu) dx

{)A

If

(1 = x/ey

I = f exp(x)

using g(0) it follows
£ (0m)[g(0) — g(03)1 = I (3)

This equation allows the determination of values for 6 against 7. Meanwhile,
from eqns. (1) and (3), we obtain

Co === 5y explx) (9)

so that from eqgn. (9) we can obtain C, against T\,.

Equations (7) and (8) must be solved numerically for the different desorp-
tion mechanism usirg the corresponding functions f(0), g(0) and f'(0) and, in
fact, this is what has been done in particular cases in the literature [5.7].

Table 1 gives functions for some simple desorption mechanisms. Of those
mechanisms, Cvetanovic and Amenomiya [5] have solved first order with and
without readsorption cases (1W and 1R1 in Table 1), while Konvalinka and
co-workers [7] have studied second order with freely occurring readsorption
of second order (2R2), as particular cases.

Theoretical curves for second-order desorption without readsorption have
not been previously developed to our knowledge, so we have tried to do it
by applying the general procedure described above. In this case, using
functions of Table 1 for mechanism 2W, we obtain from eqn. (7)
0n = 2 €n _e;;Q(ﬁMlIL 0, (10)
Values of I, were obtained numerically using Simpson’s method for some
sets of values of €. Corresponding values of 8y are given in Table 2.

The theoretical line-shapes of the TPD curve were obtained from eqns. (8)
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TABLE 2

141 values for 2W desorption mechanism

€11 f1; values

0.2500 0.5000 0.7500 1.0000
10 01115 0.2891 0.-1336 .H782
12 0.1119 0.28537 01256 05675
1-1 0.1398 0.2797 0.1197 0.559.1
16 0.13583 0.2765 01118 ().H5H30
s 0.1370 0.2710 0.-1109 0.5179
22 0.1350 0.2701 01051 0.5102
26 3.1336 0.26753 ).-1009 .53106

and (9) by the expression

S ,
C, = (2 + 1) expl(x) (11)

Equation (11) shows that normalized curves are independent of initial
coverage, depending only on the parameter ¢y, This result shows to be a
general one in the case of desorption occurring without simultaneous free
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Fig. 1. C:AA\ master curves calculated for different values of ¢51 for desorption processes
following a 2W mechanism.



readsorption of the desorbed species (mechanism 1W and 2W). Theoretical
curves obtained for mechanism 2W are shown in Fig. 1, where values of C,,
obtained from eqn. (11) for significant values of €;; with 0.4 < T, < 1.6 have
been plotted once I.-values have been evaluated numerically.

The general procedure stated in this paper to generate ““CA master curves”
can. in principle, be easily extended to any other case of desorption process,
provided that £(0) is known.
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